首页> 外文OA文献 >Style-based classification of Chinese ink and wash paintings
【2h】

Style-based classification of Chinese ink and wash paintings

机译:中国水墨画的风格分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Following the fact that a large collection of ink and wash paintings (IWP) is being digitized and made available on the Internet, their automated content description, analysis, and management are attracting attention across research communities. While existing research in relevant areas is primarily focused on image processing approaches, a style-based algorithm is proposed to classify IWPs automatically by their authors. As IWPs do not have colors or even tones, the proposed algorithm applies edge detection to locate the local region and detect painting strokes to enable histogram-based feature extraction and capture of important cues to reflect the styles of different artists. Such features are then applied to drive a number of neural networks in parallel to complete the classification, and an information entropy balanced fusion is proposed to make an integrated decision for the multiple neural network classification results in which the entropy is used as a pointer to combine the global and local features. Evaluations via experiments support that the proposed algorithm achieves good performances, providing excellent potential for computerized analysis and management of IWPs. © The Authors.
机译:随着大量的水墨画(IWP)被数字化并可以在Internet上使用这一事实,它们的自动化内容描述,分析和管理引起了整个研究界的关注。尽管相关领域的现有研究主要集中在图像处理方法上,但提出了一种基于样式的算法,以由作者自动对IWP进行分类。由于IWP没有颜色,甚至没有色调,因此所提出的算法应用边缘检测来定位局部区域并检测绘画笔触,以实现基于直方图的特征提取和重要线索的捕捉,以反映不同艺术家的风格。然后将这些特征应用于并行驱动多个神经网络以完成分类,并提出了一种信息熵平衡融合来为多个神经网络分类结果做出综合决策,其中以熵为指标进行组合全球和本地功能。通过实验评估证明,该算法具有良好的性能,为IWP的计算机化分析和管理提供了极好的潜力。 ©作者。

著录项

  • 作者

    Sheng, J; Jiang, J;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号